Inequalities

https://www.linkedin.com/groups/8313943/8313943-6396576505849274371
Let x, y, z be non-negative reals such that $x^{2}++y^{2}+z^{2}+x y z=4$.
Show that $x y z \leq x y+y z+z x \leq x y z+2$.
Solution by Arkady Alt, San Jose, California, USA.
First note that by AM-GM inequality $4-x y z=x^{2}+y^{2}+z^{2} \geq 3\left(x^{2} y^{2} z^{2}\right)^{1 / 3} \Longleftrightarrow$
$3(x y z)^{2 / 3}+x y z-4 \leq 0 \Longleftrightarrow\left((x y z)^{1 / 3}-1\right)\left((x y z)^{1 / 3}+2\right)^{2} \leq 0 \Longleftrightarrow$ $x y z \leq 1$.

Then $x y+y z+z x \geq 3\left(x^{2} y^{2} z^{2}\right)^{1 / 3}$ and since $(x y z)^{2 / 3} \geq x y z$ we obtain $x y+y z+z x \geq 3 x y z \geq x y z$.

Also note that inequality $x y+y z+z x \leq x y z+2$ holds if at least one of variables x, y, z
equal to zero. Indeed, let $z=0$.Then $x^{2}+y^{2}=4$ and,therefore, $x y \leq$ $\frac{x^{2}+y^{2}}{2}=2$.

Thus, remains to prove inequality $x y+y z+z x \leq x y z+2$ for $x, y, z>0$.
Since all positive solutions of equation $x^{2}+y^{2}+z^{2}+x y z=4$ can be represented in the
form $x=2 \cos \alpha, y=2 \cos \beta, z=2 \cos \gamma$, where $\alpha, \beta, \gamma \in(0, \pi / 2)$ and $\alpha+$ $\beta+\gamma=\pi$ then
$x y+y z+z x \leq x y z+2$ becomes $4 \sum \cos \alpha \cos \beta \leq 8 \cos \alpha \cos \beta \cos \gamma+2 \Longleftrightarrow$
(1) $2 \sum \cos \alpha \cos \beta \leq 4 \cos \alpha \cos \beta \cos \gamma+1$.

Let $A B C$ be some triangle with angles α, β, γ and R, r, s be,respectively, circumradius,inradius
and semiperimeter of $\triangle A B C$.Then, since $\cos \alpha \cos \beta \cos \gamma=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}$ and
$\sum \cos \alpha \cos \beta=\frac{s^{2}+r^{2}-4 R^{2}}{2 R^{2}}$ inequality (1) becomes
$\frac{s^{2}+r^{2}-4 R^{2}}{2 R^{2}} \leq \frac{s^{2}-(2 R+r)^{2}}{R^{2}}+1 \Longleftrightarrow s^{2}+r^{2}-4 R^{2} \leq 2\left(s^{2}-(2 R+r)^{2}\right)+$ $2 R^{2} \Longleftrightarrow 2\left(s^{2}-(2 R+r)^{2}\right)+2 R^{2}-\left(s^{2}+r^{2}-4 R^{2}\right)=-2 R^{2}-8 R r-3 r^{2}+s^{2}$
$2 R^{2}+8 R r+3 r^{2} \leq s^{2}$ (Walker's Inequality* for acute angled triangle).
My proof of the Walker's Inequality.
First we will prove that in any acute angled triangle holds inequality $a^{2}+$ $b^{2}+c^{2} \geq 4(R+r)^{2}$.

We have $a^{2}+b^{2}+c^{2} \geq 4(R+r)^{2} \Longleftrightarrow 4 R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right) \geq$ $4 R^{2}\left(1+\frac{r}{R}\right)^{2} \Longleftrightarrow$
$\sin ^{2} A+\sin ^{2} B+\sin ^{2} C \geq(\cos A+\cos B+\cos C)^{2} \Longleftrightarrow$
$\sum_{c y c}\left(1-\cos ^{2} A\right) \geq \sum_{c y c} \cos ^{2} A+2 \sum_{c y c} \cos B \cos C \Longleftrightarrow \sum_{c y c}(\cos A+\cos B)^{2} \leq 3$.
Since by Cauchy Inequality

$$
\begin{aligned}
& (\cos A+\cos B)^{2} \leq(a \cos B+b \cos A)\left(\frac{\cos B}{a}+\frac{\cos A}{b}\right)=c\left(\frac{\cos B}{a}+\frac{\cos A}{b}\right) \\
& \text { Then } \sum_{c y c}(\cos A+\cos B)^{2} \leq \sum_{c y c}\left(\frac{c \cos B}{a}+\frac{c \cos A}{b}\right)=\frac{c \cos B}{a}+\frac{c \cos A}{b}+ \\
& \frac{a \cos C}{b}+ \\
& \frac{a \cos B}{c}+\frac{b \cos A}{c}+\frac{b \cos C}{a}=\sum_{c y c}\left(\frac{c \cos B+b \cos C}{a}\right)=\sum_{c y c} \frac{a}{a}=3 .
\end{aligned}
$$

Noting that $a b+b c+c a=s^{2}+4 R r+r^{2}$ we obtain
$4 s^{2}=(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \geq 4(R+r)^{2}+2\left(s^{2}+4 R r+r^{2}\right)=$ $4 R^{2}+16 R r+6 r^{2}+2 s^{2} \Longleftrightarrow s^{2} \geq 2 R^{2}+8 R r+3 r^{2}$.

